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Abstract - In the satellite navigation systems, distortion of a 
received signal correlation function, due to the multipath 
propagation, can gravely degrade position estimation. The 
positioning accuracy is strongly affected by the quality of the 
received signal time-delay estimations. In the paper, signal and 
channel models for the L1 channel GPS C/A signal and the 
Galileo BOC(1,1) signal will be presented and the multipath 
mitigation problem analyzed. In addition, the MEDLL algorithm 
and the particle filter will be presented in detail and mutually 
compared for different simulated signals and different correlation 
times. 
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I. INTRODUCTION 

 
In modern Global Satellite Navigation Systems 

(GNSS), the most significant source of error that affects the 
navigational signals during their propagation is multipath 
[1]. Multipath degrades the correlation function in such a 
way that it is not possible to determine accurately the signal 
delay. Therefore, removal of multipath is very important 
for applications where high precision measurements are 
required (geodesy and surveying, instrument landing 
systems, atmospheric sensing) or for indoor positioning 
where line-of-sight (LOS) signal is highly deteriorated by 
multipath. In some applications, like remote sensing, 
removing influence of multipath replicas is not enough. 
Hence, it is necessary to determine amplitude and time-
delay of these replicas.  

So far, a various multipath mitigation methods have 
been developed. Fig. 1 represents hierarchy of commonly 
used multipath mitigation techniques. Many of these 
methods are using correlation of early and late signal 
replicas with a received signal in order to find value of the 
time-delay that corresponds to the maximum power of 
correlation. Narrow early-minus-late (EML) correlation 
technique is derived from standard EML by narrowing 0.5 
chip space between early and late correlators to 0.1-0.2 
chip space. [2,3]. Other important correlator-based 
multipath mitigation techniques are: Double Delta (∆∆), 
also known as High Resolution Correlator (HRC) [4], then 
Strobe and Enhanced Strobe Correlator (ESC) [5], E1/E2 
Tracker [6], Multipath Elimination Technique (MET) 
known as Early Late Slope (ELS) with Pulse Aperture 
Correlator (PAC) as a simple hardware implementation 
[7,8] and efficient technique based on Teager-Kaiser 

operator (TK) [9]. 
Maximum Likelihood (ML) estimation is based on the 

maximum likelihood principle and is very popular 
approach in signal processing. Once a signal model is 
specified with its parameters, and data have been collected, 
the maximum likelihood estimator is used to find the value 
of parameter that maximizes likelihood function. So far, 
several maximum likelihood estimation techniques have 
been used for multipath mitigation: Newton methods with 
analytical [10,11] and numerical (FIMLA, RML) [12,13] 
expressions for gradient and Hessian term, then, the most 
famous ML method, Maximum Estimating Delay Lock 
Loop (MEDLL) [14,15] with its modifications (ML2 and 
Reduced Search Space ML - RSSML) [16,17], Multipath 
Mitigation Technique (MMT) integrated into Novatel’s 
Vision Correlator [18] and iterative methods based on 
expectation-maximization algorithms (Space Alternating 
Generalized Expectation-Maximization – SAGE) [19]. 
 

 
 Fig. 1. Hierarchy of multipath mitigation techniques 
 
Bayesian filtering is concerned with the estimation of 

the underlying probability distribution of a random signal 
in order to extract the original signal from noisy 
measurements. In order to mitigate influence of the 
reflected signal components on LOS signal delay 
estimation following Bayesian filters have been used: 
Extended Kalman Filter (EKF) [20,21] and Second-order 
Extended Kalman Filter (EKF2) [21], Unscented Kalman 
Filter (UKF) [22] and Particle Filter (PF) [23,24]. 

In the paper, an emitted and a received signal models 
for the GPS L1 C/A (coarse/acquisition) signal and the 
Galileo BOC(1,1) (Binary Offset Carrier) signal will be 
presented and the multipath mitigation problem 
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investigated. Moreover, two estimation algorithms will be 
presented in detail and analyzed: the well-established and 
efficient MEDLL algorithm in contrast to the newly 
developed particle filter method.  

 
II. SIGNAL AND CHANNEL MODEL  

 
A. Transmitted signal 
 

The signal s(t) transmitted from one satellite can be 
written as [3,17] 

 
 ( ) ( ) 1cos 2bs t E q t f tπ= ⋅ ⋅ , (1) 
 
where Eb is the bit energy, q(t) is the navigation data after 
spreading and f1 is the L1 carrier wave frequency. 
Spreading of navigation data bits, {d(n)}, is done as 
 

 ( ) ( ) ( )b
n

q t d n p t nT
∞

=−∞

= −∑ , (2) 

 
where p(t) is the spreading waveform and Tb is the period 
of one data bit of the navigation message. The spreading 
waveform can be written as follows [17] 
 

 ( ) ( ) ( ) ( )
1

0

cN

c
k

p t g t c k t kTδ
−

=

= −∑ . (3) 

 
Above, g(t) is the modulation waveform (GPS L1 C/A 
signal or composite BOC(−) for Galileo E1-C signal),  δ(·) 
is the Dirac delta function, {c(k)} is the spreading, 
pseudorandom (PRN) sequence of length Nc and the star 
sign () denotes convolution. Tc is duration of one chip in 
the code sequence.  
 

The modulation waveform, g(t), can be written as  
 

 ( ) ( ) ( )
1

0

swN

P sw
i

g t g t t iTδ
−

=

= −∑ , (4) 

 
where Nsw is modulation order (the number of periods of 
the square wave within one chip), Tsw = Tc /Nsw is the 
period of square wave, and gP(t) is the shaping pulse. For 
GPS C/A signal is true that Nsw = 1 (g(t) = gB(t)) and for 
BOC modulation that Nsw = 2fsc / fc, where 2fsc is the is the 
square wave frequency and fc is the chip frequency [17].  

The shaping pulse gP(t) can be defined as filtered 
rectangular pulse using following equation 
 

 ( ) ( ) ( )( )1 2 / 2 / 1P sw sw
sw

g t Si bt T Si b t T
T

π π
π

 = − −  , (5) 

 
where b describes the location of the cut-off frequency and 
it is related to the bandwidth, Bw, through the relation 

/ (2 )w swb B T π= . Si(·) is the sine integral. On Fig. 1 a) and 
b) are shown the GPS C/A pulse and the Galileo BOC(1,1) 
pulse, respectively, for infinite bandwidth and  in the band-
limited case (Bw = 6 MHz). 
 

 
Fig. 1. a) GPS C/A and b) BOC(1,1) pulse in infinite-

bandwidth and band-limited case 
 
An expression for the power spectrum of GPS C/A 

periodic PRN can be written as  

   

( ) ( )(

( )

GPSC/A 2

2
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2
1 sinc 2

c

c
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m
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= +

   + +      
∑

, (6) 

 
for Nc = 1023 [1,3]. The power spectrum density of the 
BOC(fsc/fref,fc/fref) centered at the origin can be written as  
 

    ( )

2

BOC(-) 2

tan sin
2 2
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2 2
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f f
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f f

f f f
f

f f
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π
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π

          
     
  
     = 

     
     

    
 
     

 (7) 

 
where fref  = 1.023 MHz [3].  
 

Fig. 2 shows power spectrum density for GPS C/A and 
Galileo BOC(1,1) spreading signal. From Fig. 2 it can be 
seen that the BOC(1,1) signal spectrum is symetric split 
spectrum with two main lobes shifted from the carrier 
frequency by the amount equal to the subcarrier frequency. 

wB = ∞
6MHzwB =

wB = ∞
6MHzwB =

a) 

b) 
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Fig. 2. GPS C/A and Galileo BOC(1,1) spectrum 

 
B. Received signal 

 
The received signal r(t) from one satellite, in multipath 

environment, is composed of M paths, where one is the 
LOS signal and the others are reflected rays of the LOS 
signal. All additional sources of interference are set into a 
single additive Gaussian noise term, ν(t). After carrier 
removal and filtering, received signal r(t) can be written as 
[17,23,25] 

 

        ( ) ( ) ( ) ( )0

1

0 0
1

m

M
j j

m m
m

r t a q t e a q t e tφ φτ τ ν
−

=

= − + − +∑ , (8) 
 

where am is the amplitude of the m-th path,  φm is the phase 
of the m-th path and τm is the channel delay introduced by 
the m-th path. 

C. Problem formulation 
 

Here, we assume that the parameters of the received 
signal (am, τm, φm) are slowly varying, almost constant, 
during selected observation period. Let us define 

( ) 1Mt C ×∈a  and ( ) 1Mt R ×∈τ  as vectors containing 
complex amplitudes and time delays of the LOS signal and 
the multipath signals, respectively. The complex vector 

( ) ( ) ( ) ( ) ( )1
1 ... M

Tj t j t
Mt a t e a t eφ φ =   

a  is defined. A 

vector of the delayed signal components is defined as, 
[ ]1( , ) ( ) ... ( )Mt q t q tτ τ= − −q τ , where 1( , ) Mt C ×∈q τ . So, 

the multipath signal model that is given in equation (8) can 
be expressed in the vector form as [23,25] 
 
  ( )( ) ( , ) ( )r t t t v t= +q τ a . (9) 

 
Suppose that L samples of the signal are taken with a 

sampling interval Ts satisfying the Nyquists criterion. Then 
the sampled data in the k-th correlation period (period of 
waveform sampling and stacking) can be expressed as 

  ( ) ( ) ( )( , )k k k k= +z Q τ a v , (10) 
 

where matrix ( , ) L Mk C ×∈Q τ  is matrix containing L 
samples of delayed narrowband envelopes of LOS and 
multipath signals. The received signal and the white noise 
are expressed as ( ) ( ) 1, Lk k C ×∈z v , respectively [23,25]. 

D. ML estimation 
 

According to maximum likelihood estimation theory, 
when the noise is white, the best estimates of parameters 
are those values that maximize following likelihood 
function [25] 

( ) ( ) ( ) ( )( )(
( ) ( ) ( )( ))

1
22 1

2

1

( | , ) 2 exp ,

,

L H
p k k k

k k k

π −−

−

= − −

−

z τ a S z Q τ a

S z Q τ a
,    (11) 

 
where S  is noise covariance. The minimum of log-
likelihood function ( ), ln ( | , )p=τ a z τ a  can be found by 
setting the derivatives \∂ ∂a , \∂ ∂τ  to zero. It is easy to 
prove that, for the fixed τ,  global minimum is attained at 
 

 ( ) ( ) ( ) ( ) ( )( ) 1
ˆ , , ,

T
H Hk k k k k

− 
=  

 
a z Q τ Q τ Q τ  .  (12) 

 
Hence, the log-likelihood function, with τ  as 

parameter, can be written as  
 

 ( ) ( ) ( ) ( ) ( )1, , , ,H
zz zQ QQ zQk r k k k k−= −τ R τ R τ R τ

  


  , (13) 

 
where cross-correlation and auto-correlation matrices are 
defined as 
 

  
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1

1

ˆ ; , ,

, , ; , , ,

H H
zz zQL L

H H
zQQz QQ L

r k k k k k k

k k k k k

= =

= =

z z R τ z Q τ

R τ R τ R τ Q τ Q τ

 

 


, (14). 

 
The superscript H refers to Hermitian transpose or 
conjugate transpose of complex matrices. 
 

ML estimates of the time-delay and amplitude vector 
from equation (10) are obtained using following equations 
[23,25] 

 

 

( )
( )

( ){ }

( ) ( ) ( )( )
( )

1

ˆ

ˆ min ,

ˆ , ,

k

T
zQ QQ

k

k k

k k k−

=

=

=

τ

τ τ

τ τ

a R τ R τ






. (15)  

 

Fig. 3 shows auto-correlation functions for GPS C/A 
and BOC(1,1) signals in the band-limited case with a 
selected bandwidth of 6 MHz. 

79

Proceedings of Small Systems Simulation Symposium 2012, Niš, Serbia, 12th-14th February 2012



 
Fig. 3. GPS C/A and BOC(1,1) signal auto-correlation in 

the band-limited case  
 

III. MULTIPATH ESTIMATING DELAY LOCK LOOP 
(MEDLL) 

 
When estimating the parameters of log-likelihood 

function, ( ),τ a , in the situation when M -1 multipath 
components are present in signal, following system of 
equations can be used [14,15] 
 

( )[ ]
( )

( ) ( )[ ] ( )( ) ( )[ ]ˆarg

,
0

ˆ max ˆ ˆ, , [ ] ,m

M
j k

iQz QQi i ik i
i m

m
k k k k k e−

=
≠

= ℜ − −
  

         
∑

τ

aτ R τ a R τ τ
 

( )[ ] ( ) ( ) ( )( )
,0

ˆ .ˆ ˆ, , [ ]

0,..., 1

M

iQz QQm i i ii
i m

k k k k k

m M

=
≠

=  − −    

= −

∑a R τ a R τ τ
 

 (16) 

 
 

First equation in (16) says that for one signal component, 
estimated ( )ˆ kτ  is found in the maximum of the cross-
correlation function when influence of the other signal 
components is removed. In the same manner, for the fixed 

( )ˆ kτ , complex amplitude is found when influence of the 
other signal components is removed. When time-delay for 
one signal component is computed, the time-delays of the 
other components are not known in advance, so the 
following iterative algorithm will be used: 
 

MEDLL ALGORITHM 
(in the case of LOS signal and one multipath component) 

1.  The correlation function ( )0R τ  is set to ( ),Qz k τR


. 

2.  Complex amplitude ( )[ ]0
ˆ ka  is found for the largest peak of the 

correlation ( )0R τ , while ( )[ ]0
ˆ kτ  is calculated as a maximum of  the 

spline-interpolated correlation, ( )0R τ , using Newton-Raphson method. 

3. Using the calculated parameters ( )[ ]0
ˆ ka , ( )[ ]0

ˆ kτ  correlation is 

subtracted from ( ),Qz k τR


 to obtain a 2nd  correlation peak ( )1R τ , by 

the expression ( ) ( ) ( )[ ] ( )[ ]( )1 0 0 0,0
ˆ ˆ, ,Qz QQk k k kτ = − −  R R τ a R τ τ

 

. 

4. Complex amplitude ( )[ ]1
ˆ ka  is found for the largest peak of the 

correlation ( )1R τ , while ( )[ ]1
ˆ kτ  is calculated as a maximum of the  

spline-interpolated correlation, ( )1R τ , using Newton-Raphson method. 

5. Using the calculated parameters ( )[ ]1
ˆ ka , ( )[ ]1

ˆ kτ ,  correlation is 

subtracted from ( ),Qz k τR


 to obtain a 1st correlation peak ( )0R τ , by 

the expression ( ) ( ) ( )[ ] ( )[ ]( )0 1 1 1,1
ˆ ˆ, ,Qz QQk k k kτ = − −  R R τ a R τ τ

 

. 

6. Steps from 2 to 5 are repeated until the predefined stopping criterion is 
met. 
 

 
Figs. 4 and 5 are showing multipath error envelopes for 

GPS C/A signal and Galileo BOC(1,1) signal, respectively, 
when the narrow EML delay lock loop (with 0.1 chip 
correlator spacing) and the MEDLL are used. The 
multipath error envelopes are representing change of the 
LOS signal ranging error in dependence of the multipath 
signal delay when multipath component is in the 
constructive phase ( 1 0 0φ φ− = ° , solid lines) and in the 
destructive phase ( 1 0 180φ φ− = ° , dashed lines). It can be 
seen that LOS signal ranging error is significantly lower for 
the MEDLL, regardless of signal used. 
 

 
 

Fig. 4. Multipath error envelopes for the GPS C/A signal 
 

 
 

Fig. 5. Multipath error envelopes for the Galileo BOC(1,1) 
signal 
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IV. PARTICLE FILTER 
 
A. Particle filter theory 
 

The particle filter aims to estimate, recursively in time, 
state 2 1( ) Mk C ×∈x , based only on the observed data 

1( ) Lk C ×∈z  at time index k. Particle filter is based on 
Bayesian estimation that follows the posterior density 
function ( )( ) kp kx Z  which contains information about the 

state ( )kx , where ( ) ( ){ }1 ,...,k k=Z z z   is set of 
observations until present time [26].  

Nonlinear, non-Gaussian state space model can be 
written as follows 
 
 ( )( ) ( 1), ( )k k k= −x f x v , (17a) 

 ( )( ) ( 1) ( )k k k= − +z h x w , (17b) 
 
where  equation (17a)  represents state equation of the 
discrete-stochastic system defining its dynamical behavior. 
Second equation is called measurement equation and it 
returns observed data. 

The particle filter approximates the probability density 
( )( ) kp kx Z by a large set of P particles, , 1,...,i i P=x   

where each particle has an assigned relative weight, 
( )iw k , so that sum of all weights equals one. The location 

and weight of each particle reflects the value of the density 
in the region of the state space. The particle filter updates 
the particle location and the corresponding weights 
recursively with each new observation. The filtering 
density, ( )( ) kp kx Z , and the one step prediction density 

( )( 1) kp k +x Z  are given by a measurement update 
according to following equations  

 

 ( ) ( ) ( )
( )

1

1

( ) ( ) ( )
( )

( )
k

k
k

p k k p k
p k

p k
−

−

=
z x x Z

x Z
z Z

, (18) 

 
     ( ) ( ) ( ) ( )1 1( ) ( ) ( ) ( )k kp k p k k p k d k− −= ∫z Z z x x Z x , (19) 
 
and the time update or prediction according to 
 

( ) ( ) ( ) ( )( 1) ( 1) ( ) ( )k kp k p k k p k d k+ = +∫x Z x x x Z x .(20) 

The recursion is initiated with known 
distribution ( ) ( )( )1(0) 0p p− =x Z x , where 1−Z  is set 
without observations [26]. 

The likelihood ( )( )( )p k kz x  is calculated from 

equations (11) and (17b) using the known measurement 

noise probability density function. This function is used for 
calculation of importance weights ( )( )( )i

iw p k k= z x . 

The aim is to approximate posterior density 
( )( 1) kp k +x Z , with a sum of weighted delta-Dirac 

functions [26] 
 

  ( ) ( ) ( )( )
1

( )
P

i i
k k

i
p k w k kδ

=

≈ −∑x Z x x , (21) 

 
where the normalized importance weights are defined as 
 

  ( ) ( ) ( )
1

, 1,...,
P

i i j
j

w k w k w k i P
=

= =∑ . (22) 

 
This approach, called Sequential Importance Sampling 
(SIS) often leads to divergence, where all the weights are 
tending to zero. Using selection or resampling step this 
problem can be handled [26].  The main idea behind the 
resampling step is to discard particles with small weights 
and to multiply particles with large weights, particles that 
corresponding to large likelihoods. This is done by drawing 
a new set of particles, with replacement from the old 
particles. A suitable measure of degeneracy of the 
algorithm is the effective sample size effN . This value 

cannot be exactly calculated, so an estimate ˆ
effN  is used 

 
( )1

1ˆ
eff P

jj

N
w k

=

=
∑ 

. (23) 

When ˆ
effN  is smaller than a certain user defined threshold, 

thN , we apply the resampling step in order to decrease the 
variance of the importance weights [26]. 

Once we have approximated posterior density we can 
either determine particle that maximizes it, the so called 
maximum a-posteriori (MAP) estimate, or we can find the 
expectation, equivalent to the minimum mean square error 
(MMSE) estimate.  
 
B. Particle filter algorithm 
 

The complex-valued state vector ( )kx  contains delays 
for the LOS signal and the multipath signals and their 
corresponding complex amplitudes. In section II is said that 
for known delays it is possible to calculate amplitudes, so 
we are simplifying state vector with vector ( )kτ . This 
vector contains only time delays for the LOS signal and the 
multipath signals and can be written as 

( ) ( ) ( ) ( )0 1 1
T

Mk k k kτ τ τ − =  τ  .  
 

1. Initialization. After the acquisition, the LOS signal 
delay uncertainty is in range ,u uT T−   , while for the 

multipath signal, delay is mostly in a range [ ]0 ,2 cTτ . So, 
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the particles for the LOS signal and the multipath signal 
delay can be initialized as 
 

  
( ) ( )
( ) ( )

0

0

0 ~ ,

0 ,2 , 1,..., , 1,..., 1

i
u u

i i
m c

U T T

U T i P m M

τ

τ τ

−

∼ = = −
(24) 

 
with the weights that are equal. 
 

2. Importance Sampling. Since the likelihood function is 
the Gaussian distribution, it is quite reasonable to propose 
the Gaussian importance function for particle generation. 
Here, for the LOS signal, importance function is realized as 
the Gaussian distribution with mean in the previous MAP 
estimate for LOS signal delay and with a variance 
calculated using posterior particles. Similarly, the multipath 
signal delay is generated using the Gaussian distribution, 
but in the way that newly generated values for the delay of 
multipath signals in the particle are larger than the delay of 
the LOS signal. Thus, 
 

 

( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

2
0 0 0

2
0 0

ˆ~ ,

ˆ~ , ,

1,..., , 1,..., 1

MAP

MAP

i

i i i
m m m

k N k k

k k N k k k

i P m M

τ τ σ

τ τ τ τ σ+ −

= = −

(25) 

 

3. Weight update and estimation. For every particle, 
complex-valued signal replica is generated and ( , )kQ τ  
matrix is formed. Weights are calculated using equations 
(13) and (14) and then normalized with equation (18).  
After that, MAP estimate that maximizes posterior density 
based on equation (15) is found. Also, the a priori error 
covariance of the delay, ( )kΣ ,  must be calculated in order 
to measure estimated accuracy of the time delay. Following 
equation is used   
 

 ( ) ( ) ( ) ( )( ) ( ) ( )( )1
ˆ ˆ ,MAP MAP

TP i i
ii

k w k k k k k
=

≈ − −∑Σ τ τ τ τ   (26) 

 
with ( )2

,m m m
kσ  =  Σ . 

 
4. Resampling. According to the equation (23) value of 

ˆ
effN  is calculated. If value of ˆ

effN is less then then the 
value of threshold thN , multinomial resampling (see [26]) is 
performed. 
 

V. SIMULATION AND RESULTS 
 
The simulated GPS C/A and BOC(1,1) signals are 

composed of a LOS signal and one multipath component 
(M=2). Both signals are generated on intermediate 
frequency of 4.092 MHzIFf =  with sampling 
frequency 16.368 MHzsf = . Before carrier removal and 

spreading, signal is filtered with 6 MHz bandwidth filter. 
Accepted relative amplitude between LOS signal and 
multipath signal is α = 0.5 while delay uncertainty Tu  is 
0.1Tc. Selected signal-to-noise ratio (SNR) is -20 dB. It is 
supposed that phase difference between the LOS signal and 
the multipath signal is 10° while time-delay of multipath 
component is 0.2 chip. 

In case of the GPS C/A signal results are obtained for 
two different correlation periods. The first period is 1 ms 
and it corresponds to duration of the GPS C/A spreading 
sequence, while the second period is prolonged on 4 ms. 
On the other hand, correlation period for BOC(1,1) signal 
is 4 ms and it corresponds to duration of the 4092 chips 
long BOC spreading sequence (fc=1.023 MHz). The 
estimation results in the case of the MEDLL and the PF 
(for P=1000 particles) are shown on Figs. from 6 to 11. 

Figs. 6 and 7 are showing estimated GPS C/A LOS 
signal delay and GPS C/A multipath signal delay, 
respectively, for the MEDLL and the PF filter. On the Fig. 
6 can be seen that the MEDLL algorithm has less variance 
than the PF filter, but the MEDLL is introducing some bias 
with regard to the LOS signal delay. 

 Fig. 6. Estimated GPS C/A LOS signal delay in time with 
correlation period of 1 ms 

 

As can be seen on Fig. 7, the estimated  GPS C/A 
multipath signal delay in case of the PF is much more 
precise then the MEDLL algorithm. 

 
Fig. 7. Estimated GPS C/A multipath signal delay in time 

with correlation period of 1 ms 
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As shown on Fig. 8, for the correlation period of 4 ms, 
the estimated delay of the GPS C/A LOS signal component 
in the case of the PF is somewhat more precise compared 
to the estimation obtained using the MEDLL algorithm.  
Here, like on Fig. 6, the MEDLL algorithm is introducing 
some bias with regrad to the delay of the LOS signal 
component. 

 
Fig. 8. Estimated GPS C/A LOS signal delay in time with 

correlation period of 4 ms 
 
On Fig. 9 can be seen, that the estimation of the GPS 

C/A multipath signal component in the case of the MEDLL 
and the PF filter is almost the same with the exception of 
few peaks for the MEDLL algorithm. 

 

Fig. 9. Estimated GPS C/A multipath signal delay in time 
with correlation period of 4 ms 

 
Figs. 10 and 11 are showing estimation for the LOS and 

multipath signal delay when the Galileo BOC(1,1) signal is 
used. As can be seen on the both figures, estimation does 
not favour any of the implemented algorithms, and 
estimation in the case of the MEDLL algorithm is similar 
to the estimation of the PF filter. 

The MEDLL algorithm iterations are stopped when 
( )[ ]0

ˆ kτ  changes 0.1 ns between two successive iteration 
steps, or after 10 successive steps, whichever occurs 
earlier. The number of complex samples is 61. These 
samples are equally spread on the interval from -2Tc to 
2Tc. 

 
Fig. 10. Estimated BOC(1,1) LOS signal delay 

 
Fig. 11. Estimated BOC(1,1) multipath signal delay 

 

IV. CONCLUSION 
 
In this paper, two algorithms for the multipath 

mitigation have been presented. The simulation 
environment is set and composite GPS and Galileo signals 
are created. Using simulated signals, estimation efficiency 
of the algorithms is mutually compared. From the analysis 
it can be concluded that the particle filter, with large 
number of particles, is more precise then the MEDLL 
algorithm. This is primarily true when estimating delay of 
the GPS C/A signal with correlation periods of 1 ms and 4 
ms. With larger correlation period MEDLL estimation 
would be closer to the particle filter estimation. 
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